NoSQL data stores and SOS:

Uniform Access to Non-Relational Database Systems

72

Paolo Atzeni — Francesca Bugiotti — Luca Rossi INIVERSITA DEGLI STUDI

,_
7
<
=
%)
s

* Context
— Relational DBMS
— NoSQL Data Stores
— NoSQL Timeline

* NoSQL Data Stores
— Extensible Record Stores
— Document Stores
— Key-Value Stores
— Rise of NoSQL: a survey
— “NoSQL is about choice”
— Heterogeneity

* SOS - Save Our Systems
— Goal and requirements
— Data Model
— Interface
— Architecture
— Translation techniques

. Future Work

Relational DBMS

Relational Databases

* Provide efficient support for applications that:
— Require perstistence, consistence, avaliability, usability, ...
— Simple data structure (numeric, string, ...)
— Complex queries expressed by declarative languages

Relational DBMS

(Stonebraker & Cattel, CACM June 2011)

 "General-purpose traditional row stores”
— Disk-oriented storage
— Tables stored row-by-row on disk (hence, a row store)
— B-trees as the indexing mechanism
— Dynamic locking as the concurrency control mechanism
— A write-ahead log (WAL) for crash recovery
— SQL as the access language
— A "row-oriented" query optimizer and executor

Relational DBMS

* Relational databases proposed as universal solution

— Itisn’t completely true
* OLAP, OLTP, XML, Stream processing, ...

One size does fit all?

(Michael Stonebraker, Ugur Cetintemel: "One Size Fits All": An Idea
Whose Time Has Come and Gone. ICDE 2005: 2-11)

 Web apps changed the game
— Many users

— Many concurrent interactions
(reads and writes)

— Lots of data.

* Need for:
— Scalable, distributed storage systems
— Flexible “web-proof”’ data models
— Easy interaction with programming languages

NoSQL Data Stores

* Characteristics
— High scalability
— Data replication according to a distributed architecture
— Flexible data structure

— New indexing patterns

* Missing features
— Simple interface
— New approach towards consistency

Consistency

 CAP Theorem: A distributed system cannot satisfy all the following
properties:
— Consistency
— Availability

— Partition-tolerance

* New Consistency Approaches
— Strong consistency
— Weak consistency

— Eventual consistency

NoSQL Timeline

e 2006 — Google BigTable
e 2007 — Amazon Dynamo

e 2007 — HBase
e 2008 — Cassandra
2009 - Voldemort, Redis, Riak, MongoDB

e 2011 - Oracle NoSQL

Extensible Record Stores

* Extensible Record Stores (also called column-family stores)
— Relaxation of the Relational Model
— Store tables of extensible records
— Partitioned across multiple nodes

2006 — Google BigTable
e 2007 — Amazon Dynamo
* 2007 — HBase

HBase:

— Database made of Tables, containing Rows identified by a unique Id.

— Columns (named qualifiers) within a table are grouped into Column Families (CFs).

— Tables and CFs are static, defined in advance.

— Qualifiers are dynamic, can be added/removed at runtime.

— Within the same CF, different rows can have different qualifiers.

ColumnFamily1

LolumniFamily2

Row id Column families

ColumniFamilyN

row_id_1

qualifier1 = "value1"
qualifier2 = "value2"

qualifier1 = "value1"

row_id_2

row_id_m

qualifier1 = "value1"
row_id_1 qualifier2 = "value2"

qualifier1 = "value1"

row_id_2

row_id_m

* HBase:

Database made of Tables, containing Rows identified by a unique Id.

Columns (named qualifiers) within a table are grouped into Column Families (CFs).
Tables and CFs are static, defined in advance.

Qualifiers are dynamic, can be added/removed at runtime.

Within the same CF, different rows can have different qualifiers.

* Unique data type:

Byte-array

 Unstructured data stored in a semi-structured environment

— Some assumptions are needed

is followed

Personal
Info

follows

sends

* Twitter Example
— Users, Tweets, Personal Info
— Users follows other users and are followed themself
— Users have personal info

— Users send tweets

is followed

Personal
Info

follows

Column families

1001 Username = “Alice” FirstName = “Alice”
Password = TheAlicePassword LastName = “Smith”
1002 Username = “Bob”

Password = TheBobPassword

HBase

* Operations
— Work on sigle rows or on lists of rows

— Provide direct access to rows given the row key
* get(key)
* put(key)
» delete(key), deleteColumn(key, column), deleteFamily(...)
e add(key, columnFamily), add(key, columnFamily, qualifier, value), ...

scan(table)

— Rows selection on the basis of filters defined on column families or
qualifiers

Other characteristics
— Map-Reduce support (Hadoop)

— Strong consistency

— Max 10 column families

— Using filters deteriorates performances

— Bloom filters and column family compression for more efficient indexes

DynamoDB

DynamoDB

Database made of Tables, containing Items identified by

a unique key

ltems group a set of Attributes

Attributes are characterized by a Name and a Value

Every attribute can have multiple values

\—’-/l ”.COI ; ’

Different Items belonging to the same table can have sets of disjoints attributes

Table
Key Other attributes
key (Name,, value), ..., (Name,, value) (Name,, value)
key (Name,, value)

DynamoDB

Other attributes

(Name,, value), ..., (Name,, value) (Name,, value)

(Name,, value)

* DynamoDB

— Database made of Tables, containing Items identified by
a unique key

— Items group a set of Attributes
— Attributes are characterized by a Name and a Value
— Every attribute can have multiple values

— Different Items belonging to the same table can have sets of disjoints attributes

* Provided on the cloud

* Data types

— Scalar data types: number, string, binary

— Set data types: number set, string set, binary set

is followed

Personal
Info

follows

Table: Users

Key Other attributes

1001 Username = “Alice”, Password = TheAlicePassword, FirstName = “Alice”, ...

1002 Username = “Bob”, Password = TheBobPassword, ...

DynamoDB

* Operations

— work on sigle items
* getltem(table, key)
* putltem(table, key, av)
* deleteltem(table, key)

— row selection on the basis of filters that use attribute names

— batch operations

* batch putltem
* batch deleteltem,

DynamoDB

* Other characteristics
— High avaliability
— Keys are hashed: databases can be seen as a distributed hash table
— Node are located in specific regions (specified when the datastore is created)
— Data are replicated across nodes
— DynamoDB access cost policy

— Eventual consistency/strong consistenct

Document Stores

Document Stores
— Store collection of documents

— Documents are objects characterized by fields whose value can be a
scalar, a list, a document itself.

* 2009 — MongoDB

MongoDB

* MongoDB
— A Database is made of Collections
— A collection is a named group of Documents
— Documents are made of fields

— Fields value can be a scalar, a list, a document itself.

MongoDB

Personal
Info

follows

Users Collection

users: [
{
_id: "1001",
username: "bob1987",
password: "TheBobPassword"
personal: {
firstName: "Bob",
lastName: "Smith",
ssn: "4hfe94"
b
followers: [
{
id: "2004",
firstName: "Alice",
lastName: "Smith",
email: "alice@gmail.com"
b
{
id: "1714",

MongoDB

* Operations

— Operations defined on single fields:
* insert(collection, doc)
* find(selector, collection)
* remove(selector, collection)

— Advanced operations

 The simplest selector is the empty document {} that matches all the
documents of a collection.

MongoDB

* Other characteristics
— Full index support
— Rich query API
— Sharding

— Strong consistency

Key-value datastores

Key-value data datastores

— Store values and an index for finding them based on programmer-
defined key.

— A database is a collection of key-value pairs.

e 2009 —Redis
e 2011 - Oracle NoSQL

 Redis

— A Database is a schema-less collection of key-values pairs

— Key-value index

* Data types
— Binary Strings: any type of binary data (byte array, number, plain string, ...).
— Integer counters
— Lists, Sets of binary strings
— Hashes

 Complex data types cannot be nested
— It is not possible to define Sets of Lists, ...

* Unique key-space

is followed

Personal
Info

follows

users:1001:firstName = "Bob"

users:1001:lastName = "Smith”

users:1001 = {
username = "bob1987"

password =" TheBobPassword"

friends:2004.email = "alice@gmail.com'

friends:2004.firstName = "Alice"

* Operations
— Simple operations:

* set(key, value)

* get(key)
* delete(key)
— Advanced operations
* Insert an element into a list or a set

* Increment a counter
* hgetall(key) that retrieves all the field-value pairs of a hash associated with the key

e Other characteristics

— Efficient access (in memory)
— Map-Reduce support

— Strong consistency

NoSQL Data Stores

* Aspects to be considered

Number of accesses to retrieve an object
Resilience to unstructuredness
Partition-friendliness

How data are supposed to be queried

» Datastore best practices

* Performances influence data organization:

— Denormalize data or not? Always? Never? When?

— How we want to support consistency?

Rise of NoSQL: a survey

* 50% of IT managers/developers funded NoSQL
projects in 2011

e 70% plan to fund NoSQL projects in 2012

* Enterprisesin U.S.:

— 56% already use some NoSQL database
— 63% has plans to use in the next 2 years

[1] http://www.infog.com/news/2012/02/NoSQL-Adoption-Is-on-the-Rise
[2] http://www.prweb.com/releases/2011/6/prweb8609164.htm

“NoSQL is about choice”

- Jan Lenhardt (Couchbase Co-Founder)

 Many data model families
— Key-value store
— Column-based store

— Document store
— Graph store

 Many query models
— CRUD operations
— Map/Reduce queries
— Custom query languages
— Traversals

 Many architectural choices
— Replicas (DHT?) vs sharding
— In-RAM vs traditional storage
— APvs CPvs CA
— Strong vs eventual consistency

“NoSQL is about choice” (2)

- Jan Lenhardt (Couchbase Co-Founder)

* Choose the right tool for your needs
— One size does not fit all

* Do you need Map/Reduce?
— Pick HBase or CouchDB

Do you need great performances on simple
operations?
— Pick Redis

* Chances are you may need both

Heterogeneity still a problem

 What if:
— | want to use many data stores at the same time
— | want to migrate my data
— | want to decouple my app from a specific technology

* Reverse the canonical problem:
— One size (data store) does not fit all (apps)...

— ...but one size (your app) should fit all (the data
stores)

SOS - Save our systems

e @Goal: seamless access to different NoSQL data stores.
— Define access
— Define seamless

* Requirements:
— Lightweight: small footprint on performances

— Coherent: with main NoSQL themes and features
* Hint: do not reimplement SQL
— Seriously, someone has done it

— Scalable: easily extendable to different technologies and
data stores

SOS - Save our systems

Unif
|n?e1r?;£ne !Application Common Interface
\ e to access different NoSQL systems

PUT |GET | DELETE

pammmmd Redis | HBase Common Data Model
Super Model ’(. .
— R instances are mapped to the data stores of choice

MongoDB

 SOSis a Database Access Layer between the app and the data store

— It collects data from the interface and seamlessly manages its translation
and deployment to specific data stores

* Implementations provided for three data stores belonging to
different families:

— HBase (column-based store)
— Redis (key-value store)
— MongoDB (document store)

Common Data Model

Redis ‘ HBase

pm—
Super Model .- |

MongoDB

SOS - Save our Systems

* SOS let users define collections of collection: "student
schemaless, tree-shaped objects S

tesi: {
id: 10001 titolo: "Gestione di dati..."
relatore: "Paolo Atzeni"

}

* Each collection is identified by a
unique name

id: 10002

id: 10003

id: 10004

* Each object is identified by an ID,
unigue within the collection it
belongs to

Common Data Model (2)

Redis ‘ HBase

pm—
Super Model .- |

MongoDB

SOS - Save our Systems

* Objects are materialized in JSON
(JavaScript Object Notation)

— Lightweight
— Widely adopted
— Platform-independent

Super Model
JSON

e Custom translations are defined
between JSON and each data store

* Translations are optimized to exploit
efficiently the data store native
structures

Inte-r?arzne Application
Common Interface Unif ._

SOS - Save our Systems Application

* Operations on single objects:
— put (collection-name, id, object) : void
— get (collection-name, id, type<T>) : <T>
— delete(collection-name, id) : void

* Operations on single fields:
— put (collection-name, id, path, object) : void
— get (collection-name, id, path, type<T>) : <T>
— delete (collection-name, id, path) : void

e Operations on collections:
— get (collection-name, type<T>) : Collection<T>
— delete (collection-name) : void

Architecture

SOS - Save our Systems

 SOS is currently implemented
as a Java library.

* |t defines a streamlined API
implemented by specific data store
modules.

Java Application

l talks with

SOS API (DatabaseManager Interface)

implements implements
implements
|

HBaseManager RedisManager MongoDBManager

I I I

uses uses uses
] | |
HBase Redis MongoDB
Mapping Layer Mapping Layer Mapping Layer
talks with talks with talks with
\i A4 Y

Usage example

SOS - Save our Systems .
public class Studen

string 1d; -
String firstNamg,
Sering LastName;

private
private
private

private Set<Record> records;

Student luca = new Student(...);
DatabaseHandler db = new HBaseHandler();

db.put("students"”, luca.getId(), luca);

db.put("students"”, luca.getId(), luca);

collection
name

Translation example

SOS - Save our Systems

public class Student {

private String id;
private String firstName;
private String lastName;

private Set<Record> records;

Java

id = 72812837,
firstName = “Luca”,
lastName = ”Rossi”,
records = [

{

id = 710001”,
course = {
id = ”20001”,
name = ”Databases 101”
s
date = ”2011/06/12”,
grade = “A”

id = 7100027,
course = {
id = ”20004”,

name = ”Computer Vision”,

s
date = ”2011/05/21”,
grade = “B”

JSON

Translation example

SOS - Save our Systems

{
id = r281283”, students (table)
firstName = “Luca”,
lastName = ”Rossi”,
records =
o Sk _top records]
id = 7100017,
course = {
id = 7200017, id = “281283” [0].id = “10001”
name = ”Databases 101” firstName = “Luca” | [@].course.id = “20001”
1Y N N lastName = “Rossi” [@].course.name = “Databases 101”
s [0].date = “2011/06/12”
) grade = [@].grade = “A”
{ .
id = 7100027, [1].id = “10001”
course = { [1].C0ur'se.'i.d = “20004”
id = 720004, [1].course.name = “Computer Vision”
name = ”Computer Vision”, [1].date = “2011/05/21”
33 [1].grade = “B”
date = ”2011/05/21”,
grade = “B”
} HBas€E
]
b JSON

|

Future work

SOS - Save our Systems

Architecture:

— Deploy SOS as a web application, exposing a REST interface that deals
with JSON objects.

Translations:

— Enable custom translations, providing ways for the users to map
structures into others, and so forth.

Interface:
— Provide support for the creation (and manteinance) of indexes
— Provide support for “update” operations that involve multiple nodes

Support for other DBMSes
— Amazon DynamoDB and Oracle NoSQL are underway!

* Context
— Relational DBMS
— NoSQL Data Stores
— NoSQL Timeline

* NoSQL Data Stores
— Extensible Record Stores
— Document Stores
— Key-Value Stores
— Rise of NoSQL: a survey
— “NoSQL is about choice”
— Heterogeneity

* SOS - Save Our Systems
— Goal and requirements
— Data Model
— Interface
— Architecture
— Translation techniques

. Future Work

Questions?

